sábado, 18 de octubre de 2008

TRANSMISORES


TRANSMISORES:

Consisten en instrumentos que interpretan fenómenos físicos, los cuales traducen en señales estampar de ingeniería. El transmisor es el corazón del sistema. El convierte una propiedad física, tal como temperatura, humedad o presión en una señal eléctrica. 4 mA representa el nivel más bajo de la magnitud medida, mientras que 20 mA, plena escala, representa el extremo más alto.
Los transmisores son instrumentos que convierten la salida del sensor en una señal suficientemente fuerte como para transmitirla al controlador o a otro aparato receptor. Las señales de salida del transmisor pueden ser neumáticas, eléctricas o digitales.


TRANSMISORES ELECTRÒNICOS:

Son aquellos que utilizan como energía señales eléctricas de 4-20 mA.
El principio básico a tomar en consideración en un transmisor Electrónico es que reciben una señal de entrada o alimentación 105-50Vcc mA y por medio del proceso o variaciones del proceso la transforman a una señal de 4-15 mA, la cual es transmitida para tomar las medidas preventivas o acciones tomadas por el proceso de la instalación.

TRANSMISORES NEUMÁTICOS

Los transmisores neumáticos se basan en el sistema tobera-obturador que convierte el movimiento del elemento de medición en una señal neumática.
Transmisores neumáticos: Se fundamentan en el principio que cumple el sistema tobera obturador que conciste en un tubo con un suministro constante de presión no superior a los 25 Psi que pasa por una restricción que reduce el diámetro al rededor de 0.1 mm y que en su otro extremo se torna en forma de tobera con un diámetro de 0.25 - 0.5 mm que esta expuesto a la átmosfera ocacionando un escape que es regulado por un obturador el cual cumple la misión de controlar el escape proporcional a la separación entre él y la tobera. la función de la tobera - obturador es que a medida que la lamina obturadora disminuya o aumente la distancia hacia la tobera ocacionara un efecto inversamente proporcional sobre la presión interna que es intermedia entre la presión átmosferica y la de suministro e igual a la señal de salida del transmisor que para la tobera totalmemte cerrada equivale a 15 Psi y totalmente abierta a 3 Psi.

PRINCIPIO DE FUNCIONAMIENTO DEL TRANSMISOR NEUMATICO.

El transmisor funciona a base de un sistema tobera-obturador un relé piloto y un dispositivo de retroalimentación. Se dispone de una alimentación de aire a 20 Psi (1,4 Kg/cm² ),de una restricción, por la que pasa el aire y provoca una caida de presión, llamada "presión diferencial" para poder disponer de distintos niveles de presión de aire, de una tobera por la que sale el aire frente a un obturador que se acerca o aleja de ella en función del movimiento originado por el elemento medidor, dando lugar a la modulación del aire. Esta variación en la presión es amplificada por el relé piloto, dando lugar a una cierta salida.

TRANSMISOR DE EQUILIBRIO DE MOVIMIENTOS

El transmisor de equilibrio de movimientos compara el movimiento del elemento de medición asociado al obturador con un fuelle de realimentación de la presión posterior de la tobera. El conjunto se estabiliza según la diferencia de movimientos alcanzando siempre una posición de equilibrio tal que existe una correspondencia lineal entre la variable y la señal de salida. Hay que señalar que en este tipo de transmisores, las palancas deben ser livianas, pero bastante fuertes para que no se doblen.

TRANSMISORES INTELIGENTES:

Hasta hace poco, los transductores y transmisores había sido de tipo analógico, convirtiendo movimientos mecánicos y cambios en propiedades eléctricas en señales normalizadas de 3-15 PSI. O 4-20 mA DC. Un nuevo tipo de transmisores, basado en microprocesadores, ofrece una mayor capacidad y confiabilidad que sus antecesores.
El microprocesador incorporado en el transmisor mejora la precisión y la capacidad de comunicación. La exactitud total es mejorada eliminando las fuentes principales de error en transductor; como lo son aquellas debido a los cambios de temperatura y presión estática. Con el poder del microprocesador es posible ahora medir los efectos de la temperatura y la presión estática sobre cada sensor, individualmente.
Esto caracteriza a cada sensor utilizando formulas complejas. El resultado es que se obtiene una exactitud aproximada de 0.1 %, comparada con 0.3 % para transmisores analógicos. Este tipo de transmisores ofrece además un modo de comunicación digital, que habré nuevas posibilidades en las prácticas operacionales y de mantenimiento; otra de las ventajas de este tipo de transmisores, es la posibilidad de poder verificar a distancia la calibración del transmisor, ajustar el cero y cambiar la calibración.
Los tranmisores inteligentes permiten leer valores, configurar el transmisor, cambiar su campo de medida y diagnosticar averias, calibración y cambio de margen de medida. Algunos transmisores gozan de autocalibración, autodiagnóstico de elmentos electrónicos; su precisión es de 0.075%. Monitorea las temperaturas, estabilidad, campos de medida amplios, posee bajos costes de mantenimiento pero tiene desventajas como su lentitud, frente a variables rapidaz puede presentar problemas y para el desempeño en las comunicaciones no presenta dispocitivos universales, es decir, no intercambiable con otras marcas.



LA CALIBRACIÓN DE LOS TRANSMISORES:

Consiste en ajustarlo para que exista coincidencia en los valores de las variables detectados en la salida proporcional del instrumento con los cambios de la variable en el proceso, los diagramas de calibración consisten en una representación gráfica del procedimiento a seguir en la instalación del transmisor para la calibración.

COMO CALIBRAR UN TRANSMISOR:

Chequeo y Ajustes Preliminares:
  • Observar el estado físico del equipo, desgaste de piezas, limpieza y respuesta del equipo.
  • Determine los errores de indicacion del equipo comparado con un patrón adecuado (segun el rango y la precisión).
  • LLevar ajuistes de cero, multiplicación, angularidad y otros adicionales a los margenes recomendados para el proceso o que permita su ajuste en ambas direcciones (no en extremos) excuadramientos preliminares. Lo cual reducira al mínimo el error de angularidad.


Ajuste de cero:

  • Colocar la variable en un valor bajo de cero a 10% del rango o en la primera divición representativa a exepción de los equipos que tienen supresión de cero o cero vivo, para ello se debe simular la variable con un mecanismo adecuado, segun rango y presición lo mismo que un patrón adecuado.
  • Si el instrumento que se esta calibrando no indica el valor fijado anteriormente, se debe ajustar del mecanismo de cero( un puntero, un resorte, reostato, tornillo micrometrico, etc).
  • Si el equipo tiene ajustes adicionales con cero variable, con elevaciones o supresiones se debe hacer despues del punto anterior de ajuste de cero.


Ajuste de multiplicación:

  • Colocar la variable en un valor alto del 70 al 100%.
  • Si el instrumento no indica el valor fijado, se debe ajustar el mecanismo de multiplicación o span ( un brazo, palanca, reostato o ganancia).
    Repetir los dos ultimos pasos hasta obtener la calibración correcta para los valores alto y bajo.


Ajuste de angularidad:

  • Colocar la variable al 50% del span.
  • Si el incremento no indica el valor del 50% ajustar el mecanismo de angularidad segun el equipo.
    Repetir los dos ultimos pasos 4 y 5 hasta obtener la calibración correcta, en los tres puntos.
    Nota: Despues de terminar el procedimiento se debe levantar un acta de calibración, aproximadamente en cuatro puntos: Valores teóricos contra valores reales ( lo mas exactamente posible), tanto ascendente como descendente para determinar si tiene histeresis.



LOS TRANSMISORES DE TEMPERATURA


Los transmisores de temperatura convierten las señales débiles de Termocuplas y Pt 100 en señales de corriente 4-20mA transmitiéndolas a larga distancia por medio de los hilos sin necesidad de cables de compensación especiales.


TRANSMISORES ELECTRÓNICOS


Generalmente utilizan el equilibrio de fuerzas, el desequilibrio da lugar a una variación de posición relativa, exitando un transductor de despalzamiento tal como un detector de inductacía o un transformador diferencial. Un circuito oscilador asociado con cualquiera de estos detectores alimenta una unidad magnética y es así como se complementa un circuito de realimentación variando la corriente de salida en forma proporcional al intervalo de al variable en proceso. Su presición es de 0.5 - 1% en una salida estandar de 4 - 20mA. Se caracterizan por el rango de entrada del sensor.



TRANSMISOR ELECTRÓNICO DE EQUILIBRIO DE FUERZAS.

Transmisores electrónicos


Los transmisores electrónicos son generalmente de equilibrio de fuerzas. Consisten en su forma más sencilla en una barra rígida apoyada en un punto sobre la que actúan dos fuerzas en equilibrio: - La fuerza ejercida por el elemento mecánico de medición (tubo Bourdon, espiral, fuelle...). - La fuerza electromagnética de una unidad magnética.
El desequilibrio entre estas das fuerzas da lugar a una variación de posición relativa de la barra, excitando un transductor de desplazamiento tal como un de tector de inductancia o un transformador diferencial.
Un circuito oscilador asociado con cualquiera de estos detectores alimenta una unidad magnética y la fuerza generada rposic¡ena la barra de equilibrio de fuerzas. Se cemplera así un circuito de realimentación variando la corriente de salida en forma proporcional al intervalo de la variable del proceso.
Los transductores electrónicos de equilibrio de fuerzas se caracterizan por tener un movimiento muy pequeño de la barra de equilibrio, poseen realimentación, una elasticidad muy buena y un nivel alto en la señal de salida.
Por su constitución mecánica presentan un ajuste del cero y del alcance complicado y una alta sensibilidad a vibraciones y su estabilidad en el tiempo es de media a pobre. Su intervalo de medida corresponde al del elemento mecánico que utilizan (tubo Bourdon, espiral, fuelle, diafragma...) y su precisión es del orden de 0,5-1 %.
El transmisor electrónico descrito es el utilizado como estándar en la transmisión de señales generales del proceso. Existen otros sistemas de transmisión que pueden aplicarse pero que son específicos para cada variable en particular en la medida y transmisión de presión y de temperatura.

domingo, 12 de octubre de 2008

EL OSCILOSCOPIO

El osciloscopio es un instrumento que permite visualizar fenómenos transitorios así como formas de ondas en circuitos eléctricos y electrónicos. Por ejemplo en el caso de los televisores, las formas de las ondas encontradas de los distintos puntos de los circuitos están bien definidas, y mediante su análisis podemos diagnosticar con facilidad cuáles son los problemas del funcionamiento.
Los osciloscopios son de los instrumentos más versátiles que existen y los utilizan desde técnicos de reparación de televisores hasta médicos. Un
osciloscopio puede medir un gran número de fenómenos, provisto del transductor adecuado (un elemento que convierte una magnitud física en señal eléctrica) será capaz de darnos el valor de una presión, ritmo cardiaco, potencia de sonido, nivel de vibraciones en un coche, etc.Es importante que el osciloscopio utilizado permita la visualización de señales de por lo menos 4,5 ciclos por segundo, lo que permite la verificación de etapas de video, barrido vertical y horizontal y hasta de fuentes de alimentación.
Si bien el más común es el
osciloscopio de trazo simple, es mucho mejor uno de trazo doble en el que más de un fenómeno o forma de onda pueden visualizarse simultáneamente.
El funcionamiento del
osciloscopio está basado en la posibilidad de desviar un haz de electrones por medio de la creación de campos eléctricos y magnéticos.
En la mayoría de osciloscopios, la desviación
electrónica, llamada deflexión, se consigue mediante campos eléctricos. Ello constituye la deflexión electrostática.
Una minoría de aparatos de osciloscopía especializados en la visualización de curvas de respuesta, emplean el
sistema de deflexión electromagnética, igual al usado en televisión. Este último tipo de osciloscopio carece de control del tiempo de exploración.
El
proceso de deflexión del haz electrónico se lleva a cabo en el vacío creado en el interior del llamado tubo de rayos catódicos (TRC). En la pantalla de éste es donde se visualiza la información aplicada.El tubo de rayos catódicos de deflexión electroestática está dotado con dos pares de placas de deflexión horizontal y vertical respectivamente, que debidamente controladas hacen posible la representación sobre la pantalla de los fenómenos que se desean analizar.
cartesianas en las que los ejes horizontal y vertical representan
tiempo y tensión respectivamente. La escala de cada uno de los ejes cartesianos grabados en la pantalla, puede ser cambiada de modo independiente uno de otro, a fin de dotar a la señal de la representación más adecuada para su medida y análisis.
Las dimensiones de la pantalla del TRC están actualmente normalizadas en la mayoría de instrumentos, a 10 cm en el eje horizontal (X) por 8 cm en el eje vertical (Y). Sobre la pantalla se encuentran grabadas divisiones de 1 cm cuadrado, bien directamente sobre el TRC o sobre una pieza superpuesta a él, en la que se encuentra impresa una retícula de 80 cm cuadrados. En esta retícula es donde se realiza la representación de la señal aplicada al osciloscopio.
El osciloscopio, como aparato muy empleado que es, se encuentra representado en el
mercado de instrumentos bajo muchas formas distintas, no sólo en cuanto al aspecto puramente físico sino en cuanto a sus características internas y por tanto a sus prestaciones y posibilidades de aplicación de las mismas.
No obstante, a pesar de las posibles diferencias existentes, todos los osciloscopios presentan unos
principios de funcionamiento comunes. Los de uso más generalizado son los que podríamos definir como "osciloscopios básicos".
Con el osciloscopio se pueden visualizar formas de
ondas de señales alternantes, midiendo su voltaje pico a pico, medio y rms.En el anterior dibujo se ve el esquema de bloques de un osciloscopio de tipo básico. Según se observa en este dibujo, los circuitos fundamentales son los siguientes:

  • Atenuador de entrada vertical
  • Amplificador de vertical
  • Etapa de deflexión vertical
  • Amplificador de la muestra de disparo (trigger)
  • Selector del modo de disparo (interior o exterior)
  • Amplificador del impulso de disparo
  • Base de tiempos
  • Amplificador del impulso de borrado
  • Etapa de deflexión horizontal
  • Tubo de rayos catódicos
  • Circuito de alimentación.


Una corriente alterna es aquella que cambia constantemente de valor e invierte su dirección a intervalos regulares. En el caso de un alternador, esos cambios son resultado de la rotación de la armadura o inducido, ya que cada vuelta del alambre del embobinado corta las líneas de fuerza del campo magnético en una dirección y luego en la dirección opuesta, ocasionando así que los electrones se muevan alternativamente en una dirección y luego en la dirección contraria.
De acuerdo con esto, una alternación es el
cambio de intensidad que sufre una corriente alterna mientras se mueve en una dirección, creciendo su intensidad de cero a su valor máximo y volviendo nuevamente a cero. Dos alternaciones, una en una dirección y la otra en la dirección contraria o negativa, forman un ciclo. En un alternador de dos polos, cuando la armadura haya efectuado una revolución completa habrá recorrido 360 º eléctricos y habrá ocurrido un ciclo. El número de ciclos que ocurren durante un segundo constituye la frecuencia de la corriente alterna, la cual se simboliza con la letra f. Otro parámetro importante de la corriente alterna es el periodo, que se simboliza con la letra T, el periodo y la frecuencia son recíprocos el uno del otro, cumpliéndose la siguiente ecuación:La frecuencia se mide usualmente en ciclos por segundo o Hertzios (Hz). En la siguiente figura nos podemos hacer una idea más clara del periodo y la frecuencia de una onda:

Tipos de osciloscopios
Los equipos electrónicos se dividen en dos tipos: Analógicos y Digitales. Los primeros trabajan con
variables continuas mientras que los segundos lo hacen con variables discretas. Los primeros trabajan directamente con la señal aplicada, está una vez amplificada desvía un haz de electrones en sentido vertical proporcionalmente a su valor. En contraste los osciloscopios digitales utilizan previamente un conversor analógico-digital (A/D) para almacenar digitalmente la señal de entrada, reconstruyendo posteriormente esta información en la pantalla. Ambos tipos tienen sus ventajas e inconvenientes. Los analógicos son preferibles cuando es prioritario visualizar variaciones rápidas de la señal de entrada en tiempo real. Los osciloscopios digitales se utilizan cuando se desea visualizar y estudiar eventos no repetitivos (picos de tensión que se producen aleatoriamente).

Osciloscopios analógicos
Cuando se conecta la sonda a un circuito, la señal atraviesa esta última y se dirige a la sección vertical. Dependiendo de donde situemos el mando del amplificador vertical atenuaremos la señal ó la amplificaremos. En la salida de este bloque ya se dispone de la suficiente señal para atacar las placas de deflexión verticales y que son las encargadas de desviar el haz de electrones, que surge del cátodo e impacta en la capa fluorescente del interior de la pantalla, en sentido vertical. Hacia arriba si la tensión es positiva con respecto al punto de referencia (GND) ó hacia abajo si es negativa. La señal también atraviesa la sección de disparo para de esta forma iniciar el barrido horizontal (este es el encargado de mover el haz de electrones desde la parte izquierda de la pantalla a la parte derecha en un determinado
tiempo). El trazado (recorrido de izquierda a derecha) se consigue aplicando la parte ascendente de un diente de sierra a las placas de deflexión horizontal, y puede ser regulable en tiempo actuando sobre el mando TIME-BASE. El trazado (recorrido de derecha a izquierda) se realiza de forma mucho más rápida con la parte descendente del mismo diente de sierra.
De esta forma la acción combinada del trazado horizontal y de la deflexión vertical traza la gráfica de la señal en la pantalla. La sección de disparo es necesaria para estabilizar las señales repetitivas (se asegura que el trazado comience en el mismo punto de la señal repetitiva).
Como conclusión para utilizar de forma correcta un osciloscopio analógico necesitamos realizar tres ajustes básicos:
La atenuación ó amplificación que necesita la señal. Utilizar el mando AMPL para ajustar la amplitud de la señal antes de que sea aplicada a las placas de deflexión vertical. Conviene que la señal ocupe una parte importante de la pantalla sin llegar a sobrepasar los límites.
La base de tiempos. Utilizar el mando TIME-BASE para ajustar lo que representa en tiempo una división en horizontal de la pantalla. Para señales repetitivas es conveniente que en la pantalla se puedan observar aproximadamente un par de ciclos.
Disparo de la señal. Utilizar los mandos TRIGGER LEVEL (nivel de disparo) y TRIGGER SELECTOR (tipo de disparo) para estabilizar lo mejor posible señales repetitivas.
Por supuesto, también deben ajustarse los controles que afectan a la visualización: FOCUS (enfoque), INTENS (intensidad) nunca excesiva, Y-POS (posición vertical del haz) y X-POS (posición horizontal del haz). Osciloscopios digitales
Los osciloscopios digitales poseen además de las secciones explicadas anteriormente un
sistema adicional de proceso de datos que permite almacenar y visualizar la señal.
Cuando se conecta la sonda de un osciloscopio digital a un circuito, la sección vertical ajusta la amplitud de la señal de la misma forma que lo hacia el osciloscopio analógico.
El conversor analógico-digital del
sistema de adquisición de datos hace un muestreo la señal a intervalos de tiempo determinados y convierte la señal de voltaje continua en una serie de valores digitales llamados muestras. En la sección horizontal una señal de reloj determina cuando el conversor A/D toma una muestra. La velocidad de este reloj se denomina velocidad de muestreo y se mide en muestras por segundo.
Los
valores digitales muestreados se almacenan en una memoria como puntos de señal. El número de los puntos de señal utilizados para reconstruir la señal en pantalla se denomina registro. La sección de disparo determina el comienzo y el final de los puntos de señal en el registro. La sección de visualización recibe estos puntos del registro, una vez almacenados en la memoria, para presentar en pantalla la señal. Dependiendo de las capacidades del osciloscopio se pueden tener procesos adicionales sobre los puntos muestreados, incluso se puede disponer de un predisparo, para observar procesos que tengan lugar antes del disparo. Fundamentalmente, un osciloscopio digital se maneja de una forma similar a uno analógico, para poder tomar las medidas se necesita ajustar el mando AMPL, el mando TIME-BASE así como los mandos que intervienen en el disparo.
TerminologíaExiste un término general para describir un patrón que se repite en el tiempo: onda. Existen
ondas de sonido, ondas oceánicas, ondas cerebrales y por supuesto, ondas de tensión. Un osciloscopio mide estas últimas. Un ciclo es la mínima parte de la onda que se repite en el tiempo. Una forma de onda es la representación gráfica de una onda. Una forma de onda de tensión siempre se presentará con el tiempo en el eje horizontal (X) y la amplitud en el eje vertical (Y).
La forma de onda nos proporciona una valiosa
información sobre la señal. En cualquier momento podemos visualizar la altura que alcanza y, por lo tanto, saber si el voltaje ha cambiado en el tiempo (si observamos, por ejemplo, una línea horizontal podremos concluir que en ese intervalo de tiempo la señal es constante). Con la pendiente de las líneas diagonales, tanto en flanco de subida como en flanco de bajada, podremos conocer la velocidad en el paso de un nivel a otro, pueden observarse también cambios repentinos de la señal (ángulos muy agudos) generalmente debidos a procesos transitorios.
Tipos de ondas
Se pueden clasificar las ondas en los cuatro tipos siguientes:

  • Ondas senoidales
  • Ondas cuadradas y rectangulares
  • Ondas triangulares y en diente de sierra.
  • Pulsos y flancos ó escalones.


Ondas senoidales


Son las ondas fundamentales y eso por varias razones: Poseen unas propiedades matemáticas muy interesantes (por ejemplo con combinaciones de señales senoidales de diferente amplitud y frecuencia se puede reconstruir cualquier forma de onda), la señal que se obtiene de las tomas de corriente de cualquier casa tienen esta forma, las señales de test producidas por los circuitos osciladores de un generador de señal son también senoidales, la mayoría de las fuentes de potencia en AC (corriente alterna) producen señales senoidales.
La señal senoidal amortiguada es un caso especial de este tipo de ondas y se producen en fenómenos de oscilación, pero que no se mantienen en el tiempo.
Ondas cuadradas y rectangulares
Las ondas cuadradas son básicamente ondas que pasan de un
estado a otro de tensión, a intervalos regulares, en un tiempo muy reducido. Son utilizadas usualmente para probar amplificadores (esto es debido a que este tipo de señales contienen en si mismas todas las frecuencias). La televisión, la radio y los ordenadores utilizan mucho este tipo de señales, fundamentalmente como relojes y temporizadores.
Las ondas rectangulares se diferencian de las cuadradas en no tener iguales los intervalos en los que la tensión permanece a nivel alto y bajo. Son particularmente importantes para analizar
circuitos digitales.

Ondas triangulares y en diente de sierra
Se producen en
circuitos diseñados para controlar voltajes linealmente, como pueden ser, por ejemplo, el barrido horizontal de un osciloscopio analógico ó el barrido tanto horizontal como vertical de una televisión. Las transiciones entre el nivel mínimo y máximo de la señal cambian a un ritmo constante. Estas transiciones se denominan rampas.La onda en diente de sierra es un caso especial de señal triangular con una rampa descendente de mucha más pendiente que la rampa ascendente.

Pulsos y flancos ó escalones
Señales, como los flancos y los pulsos, que solo se presentan una sola vez, se denominan señales transitorias. Un flanco ó escalón indica un
cambio repentino en el voltaje, por ejemplo cuando se conecta un interruptor de alimentación. El pulso indicaría, en este mismo ejemplo, que se ha conectado el interruptor y en un determinado tiempo se ha desconectado. Generalmente el pulso representa un bit de información atravesando un circuito de un ordenador digital ó también un pequeño defecto en un circuito (por ejemplo un falso contacto momentáneo). Es común encontrar señales de este tipo en ordenadores, equipos de rayos X y de comunicaciones.

VoltajeVoltaje es la diferencia de potencial eléctrico entre dos puntos de un circuito. Normalmente uno de esos puntos suele ser masa (GND, 0v), pero no siempre, por ejemplo se puede medir el voltaje pico a pico de una señal (Vpp) como la diferencia entre el
valor máximo y mínimo de esta. La palabra amplitud significa generalmente la diferencia entre el valor máximo de una señal y masa. En la serie de valores que experimenta una corriente alterna o una fuerza electromotriz senoidal, en el transcurso de un ciclo, el más alto posible es cuando el inductor corta el mayor número posible de líneas de fuerza. Este valor se denomina "Valor máximo" y es positivo a 90 º y negativo a 270 º eléctricos. Se llama valor instantáneo al valor de la corriente o del voltaje en un momento cualquiera. El valor máximo es un valor instantáneo, lo mismo que el valor de cero y cualquier otro comprendido entre estos dos.
Desde el punto de vista práctico, es de gran importancia el "valor efectivo' o rms, que es el valor que registran los instrumentos de medición para corriente alterna. El valor rms es el que produce el mismo efecto térmico (de
calor) que el de una corriente directa. Así, por ejemplo, si una corriente directa de 5 amperios calienta el agua de una vasija a una temperatura de 90 º C, una corriente alterna que produzca la misma elevación de temperatura tendrá un valor efectivo o rms de 5 amperios.El valor medio de una onda alterna senoidal pura es cero, dado que la semionda positiva es igual y de signo contrario a la semionda negativa. De ahí que cuando se habla de valor medio siempre se refiera al valor medio de una semionda. El valor medio de una senoide simétrica se define como la media algebraica de los valores instantáneos durante un semiperiodo. También podemos decir que el valor medio es una ordenada tal que el área del rectángulo a que da lugar es igual al área del semiperiodo. Se representa añadiendo el subíndice med a la letra mayúscula de la magnitud de la cual se trate, Emed, Imed, Pmed, etcétera. Tiene por expresión matemática:Relaciones entre los valores pico a pico, máximo y efectivoEl valor máximo es la mitad del valor pico a pico, y el valor rms se obtiene dividiendo el valor pico a pico por , por ejemplo si obtenemos en una medición un valor de voltaje pico a pico de 18 voltios y deseamos obtener el valor máximo y el valor rms, procederemos como sigue:Luego el voltaje máximo en nuestro ejemplo es de 9 voltios, el voltaje rms es de 6,364 voltios y el voltaje medio es de 5,730 voltios.FaseLa fase se puede explicar mucho mejor si consideramos la forma de onda senoidal. La onda senoidal se puede extraer de la circulación de un punto sobre un circulo de 360 º. Un ciclo de la señal senoidal abarca los 360 º.
Cuando se comparan dos señales senoidales de la misma frecuencia puede ocurrir que ambas no estén en fase, o sea, que no coincidan en el tiempo los pasos por puntos equivalentes de ambas señales. En este caso se dice que ambas señales están desfasadas, pudiéndose medir el desfase con una simple regla de tres:
Siendo t el tiempo de retraso entre una señal y otra.
Parámetros que influyen en la
calidad de un osciloscopioAncho de Banda
Especifica el rango de frecuencias en las que el osciloscopio puede medir con precisión. Por convenio el ancho de banda se calcula desde 0Hz (continua) hasta la frecuencia a la cual una señal de tipo senoidal se visualiza a un 70.7% del valor aplicado a la entrada (lo que corresponde a una atenuación de 3dB).
Tiempo de subida
Es otro de los parámetros que nos dará, junto con el anterior, la máxima frecuencia de utilización del osciloscopio. Es un parámetro muy importante si se desea medir con fiabilidad pulsos y flancos (recordar que este tipo de señales poseen transiciones entre niveles de tensión muy rápidas). Un osciloscopio no puede visualizar pulsos con tiempos de subida más rápidos que el suyo propio.
Sensibilidad vertical
Indica la facilidad del osciloscopio para amplificar señales débiles. Se suele proporcionar en mV por división vertical, normalmente es del orden de 5 mV/div (llegando hasta 2 mV/div).
VelocidadPara osciloscopios analógicos esta especificación indica la
velocidad máxima del barrido horizontal, lo que nos permitirá observar sucesos más rápidos. Suele ser del orden de nanosegundos por división horizontal. Exactitud en la ganancia
Indica la precisión con la cual el
sistema vertical del osciloscopio amplifica ó atenúa la señal. Se proporciona normalmente en porcentaje máximo de error. Exactitud de la base de tiempos
Indica la precisión en la base de tiempos del
sistema horizontal del osciloscopio para visualizar el tiempo. También se suele dar en porcentaje de error máximo.
Resolución vertical
Se mide en bits y es un parámetro que nos da la resolución del conversor A/D del osciloscopio digital. Nos indica con que precisión se convierten las señales de entrada en
valores digitales almacenados en la memoria. Técnicas de cálculo pueden aumentar la resolución efectiva del osciloscopio.
Funcionamiento del Osciloscopio
Los siguientes son los pasos para el correcto manejo del osciloscopio:Poner a tierra
Una buena conexión a
tierra es muy importante para realizar medidas con un osciloscopio. Por seguridad es obligatorio colocar a tierra el osciloscopio. Si se produce un contacto entre un alto voltaje y la carcasa de un osciloscopio no puesto a tierra, cualquier parte de la carcasa, incluidos los mandos, puede producirle un peligroso shock. Mientras que un osciloscopio bien colocado a tierra, la corriente, que en el anterior caso atravesaría al usuario, se desvía a la conexión de tierra. Para conectar a tierra un osciloscopio se necesita unir el chasis del osciloscopio con el punto de referencia neutro de tensión (comúnmente llamado tierra). Esto se consigue empleando cables de alimentación con tres conductores (dos para la alimentación y uno para la toma de tierra). El osciloscopio necesita, por otra parte, compartir la misma masa con todos los circuitos bajo prueba a los que se conecta. Algunos osciloscopios pueden funcionar a diferentes tensiones de red y es muy importante asegurarse que esta ajustado a la misma de la que disponemos en las tomas de tensión.
Ponerse a tierra uno mismo
Si se trabaja en
circuitos integrados (ICs), especialmente del tipo CMOS, es necesario colocarse a tierra uno mismo. Esto es debido a que ciertas partes de estos circuitos integrados son susceptibles de estropearse con la tensión estática que almacena nuestro propio cuerpo. Para resolver este problema se puede emplear una correa conductora que se conectará debidamente a tierra, descargando la electricidad estática que posea su cuerpo.

Ajuste inicial de los controles
Después de conectar el osciloscopio a la toma de
red y de alimentarlo pulsando en el interruptor de encendido:
Es necesario familiarizarse con el panel frontal del osciloscopio. Todos los osciloscopios disponen de tres secciones básicas que llamaremos: Vertical, Horizontal, y Disparo. Dependiendo del tipo de osciloscopio empleado en particular, podemos disponer de otras secciones.
Existen unos conectores BNC, donde se colocan las sondas de medida.

La mayoría de los osciloscopios actuales disponen de dos canales etiquetados normalmente como I y II (ó A y B). El disponer de dos canales nos permite comparar señales de forma muy có
moda.
Algunos osciloscopios avanzados poseen un interruptor etiquetado como AUTOSET ó PRESET que ajustan los controles en un solo paso para ajustar perfectamente la señal a la pantalla. Si el osciloscopio no posee esta
característica, es importante ajustar los diferentes controles del aparato a su posición standard antes de proceder a medir.
Estos son los pasos más recomendables:

  • Ajustar el osciloscopio para visualizar el canal I. (Al mismo tiempo se colocará como canal de disparo el I).
  • Ajustar a una posición intermedia la escala voltios/división del canal I (por ejemplo 1v/cm).
  • Colocar en posición calibrada el mando variable de voltios/división (potenciómetro central).
  • Desactivar cualquier tipo de multiplicadores verticales.
  • Colocar el conmutador de entrada para el canal I en acoplamiento DC.
  • Colocar el modo de disparo en automático.
  • Desactivar el disparo retardado al mínimo ó desactivado.
  • Situar el control de intensidad al mínimo que permita apreciar el trazo en la pantalla, y el trazo de focus ajustado para una visualización lo más nítida posible (generalmente los mandos quedaran con la señalización cercana a la posición vertical).

    Sondas de medida


Con los pasos detallados anteriormente, ya estamos en condiciones de conectar la sonda de medida al conector de entrada del canal I. Es muy importante utilizar las sondas diseñadas para trabajar específicamente con el osciloscopio. Una sonda no es, ni mucho menos, un cable con una pinza, sino que es un conector específicamente diseñado para evitar ruidos que puedan perturbar la medida.
Además, las sondas se construyen para que tengan un efecto mínimo sobre el circuito de medida. Esta facultad de la sondas recibe el nombre de efecto de carga, para minimizarla se utiliza un atenuador pasivo, generalmente de x10.
Este tipo de sonda se proporciona generalmente con el osciloscopio y es una excelente sonda de utilización general. Para otros tipos de medidas se utilizan sondas especiales, como pueden ser las sondas de corriente ó las activas.Sondas pasivas
La mayoría de las sondas pasivas están marcadas con un factor de atenuación, normalmente 10X ó 100X. Por convenio los factores de atenuación aparecen con el signo X detrás del factor de división. En contraste los factores de amplificación aparecen con el signo X delante (X10 ó X100).
La sonda más utilizada posiblemente sea la 10X, reduciendo la amplitud de la señal en un factor de 10. Su utilización se extiende a partir de frecuencias superiores a 5 KHz y con niveles de señal superiores a 10 mV. La sonda 1X es similar a la anterior pero introduce más carga en el circuito de prueba, pero puede medir señales con menor nivel. Por comodidad de uso se han introducido sondas especiales con un conmutador que permite una utilización 1X ó 10X. Cuando se utilicen este tipo de sondas hay que asegurarse de la posición de este conmutador antes de realizar una medida.Compensación de la sonda
Antes de utilizar una sonda atenuadora 10X es necesario realizar un ajuste en frecuencia para el osciloscopio en particular sobre el que se vaya a trabajar. Este ajuste se denomina compensación de la sonda y consta de los siguientes pasos.

  1. Conectar la sonda a la entrada del canal I.
  2. Conectar la punta de la sonda al punto de señal de compensación (La mayoría de los osciloscopios disponen de una toma para ajustar las sondas, en caso contrario será necesario utilizar un generador de onda cuadrada).
  3. Conectar la pinza de cocodrilo de la sonda a masa.
  4. Observar la señal cuadrada de referencia en la pantalla.
  5. Con el destornillador de ajuste, actuar sobre el condensador de ajuste hasta observar una señal cuadrada perfecta.

    Sondas activas
    Proporcionan una amplificación antes de aplicar la señal a la entrada del osciloscopio. Pueden ser necesarias en circuitos con una
    potencia de salida muy baja. Este tipo de sondas necesitan para operar una fuente de alimentación. Sondas de corriente
    Posibilitan la medida directa de las corrientes en un circuito. Las hay para medida de corriente alterna y continua. Poseen una pinza que abarca el cable a través del cual se desea medir la corriente. Al no situarse en serie con el circuito causan muy poca interferencia en él.¿Qué podemos hacer con un osciloscopio?.
  • Medir directamente la tensión (voltaje) de una señal.
  • Medir directamente el periodo de una señal.
  • Determinar indirectamente la frecuencia de una señal.
  • Medir la diferencia de fase entre dos señales.
  • Determinar que parte de la señal es DC y cual AC.
  • Localizar averías en un circuito.
  • Determinar que parte de la señal es ruido y como varia este en el tiempo.


Medida de tensiones con el Osciloscopio


Las pantallas de los Osciloscopios vienen calibradas con un reticulado de modo que en función de las ganancias seleccionadas para los circuitos internos, podemos usarlas como referencias para medir tensiones. Así si la llave selectora de ganancia estuviera en la posición de 1V/div, lo que corresponde a 1 voltio por cada división, bastará centrar la señal para poder obtener diversas lecturas sobre su intensidad a partir de la forma de onda.En la figura por ejemplo, tenemos un ejemplo de señal de 3 voltios de tensión máxima o 6 voltios de tensión pico a pico, si la llave selectora está en la posición 1V/div.
Este
procedimiento no sólo se aplica a señales alternadas. También las tensiones continuas pueden medirse con el osciloscopio. Una vez centrado el trazo en la pantalla, aplicamos en la entrada vertical la tensión que queremos medir. El alejamiento del trazo en la vertical (para arriba o para abajo) va a depender de la tensión de entrada.
Si la señal analizada tiene forma de onda conocida —senoidal, triangular, rectangular—además de
los valores de pico resulta fácil obtener otros valores como por ejemplo el valor medio, el valor rms. Del mismo modo si se trata de una señal de audio de forma conocida, también podemos calcular la potencia.
En cada una de las posiciones del atenuador vertical, se puede leer directamente la tensión necesaria para desviar el trazo un centímetro, en sentido vertical. Esto nos permite realizar mediciones de tensión sobre la pantalla, tanto de continua como de alterna. En ambos casos, se situará el conmutador de acoplamiento en la posición adecuada. La medida de una tensión alterna se realizará contando los centímetros o cuadros de la retícula que ocupa la señal sobre la pantalla, multiplicándolos por el factor de conversión seleccionado con el conmutador de vertical, teniendo en cuenta que cuanto mayor sea el espacio ocupado por la señal, sobre la pantalla, más fiable será la medida realizada.
Al realizar una medida de tensión continua, o bien su componente dentro de una forma de onda, lo que mediremos será el desplazamiento vertical que experimenta la deflexión a partir de una determinada referencia. Este desplazamiento nos indicará además, la polaridad de la tensión continua medida, según sea hacia la parte superior de la retícula (tensión positiva) o hacia la parte inferior (tensión negativa).
Medida de Tiempos con el Osciloscopio
La distancia respecto al tiempo, entre dos puntos determinados, se puede calcular a partir de la distancia
física en centímetros existente entre dichos puntos y multiplicándola por el factor indicado en el conmutador de la base de tiempos. En el ejemplo anterior si la llave selectora de intervalo de tiempo estuviera en .01 segundo, el tiempo del ciclo dibujado sería de .1 segundo, es decir, esta sería una onda de periodo igual a .1 segundo.Medida de frecuencia
La frecuencia propia de una señal determinada se puede medir sobre un osciloscopio con arreglo a dos
métodos distintos:
1. A partir de la medida de un período de dicha señal según la aplicación del
método anterior y empleando la fórmula:
2. Mediante la comparación entre una frecuencia de valor conocido y la que deseamos conocer.

En este caso el osciloscopio se hace trabajar en régimen X/Y (Deflexión exterior).Aplicando cada una de las señales, a las entradas "X" e "Y" del osciloscopio y en el caso de que exista una relación armónica completa entre ambas, se introduce en la pantalla una de las llamadas "figuras de Lissajous", a la vista de la cual se puede averiguar el número de veces que una frecuencia contiene a la otra y por lo tanto deducir el valor de la frecuencia desconocida.Medida de fases
El sistema anterior de medida de frecuencia mediante el
empleo de las "curvas de Lissajous", se puede utilizar igualmente para averiguar el desfase en grados existente entre dos señales distintas de la misma frecuencia. Hacemos trabajar el osciloscopio con deflexión horizontal exterior, aplicando a sus entradas horizontal y vertical (X/Y) las dos señales que se desean comparar.
Mediante esta conexión se formará en la pantalla una "curva de Lissajous" que debidamente interpretada nos dará la diferencia de fase existente entre las dos formas de onda que se comparan.
En los anteriores
dibujos, se dan algunos ejemplos de este sistema de aplicación.Aparte de los ejemplos de medida anteriores, en el caso de que se requiera una mayor precisión en la medida de un desfase y empleando igualmente las curvas de Lissajous.
Si se dispone de un osciloscopio con doble canal vertical, se puede también medir el desfase entre dos señales de igual frecuencia, mediante la aplicación a cada canal vertical de una de las señales que se desea comparar.El osciloscopio trabaja en este caso con su propia deflexión horizontal, con lo que se podrán comparar las señales y apreciar su grado de desfase.

CURSO DE SOLDADURA CON ESTAÑO

http://electronica.ugr.es/~amroldan/asignaturas/curso03-04/cce/practicas/soldadura/soldadura.htm

Tiristores controlados por MOS (MCT).


Un tiristor controlado por MOS (MCT) combina las características de un tiristor regenerativo de cuatro capas y una estructura de compuerta MOS. El circuito equivalente se muestra en la figura siguiente (b) y el símbolo correspondiente en la (a). La estructura NPNP se puede representar por un transistor NPN Q1 y con un transistor Q2. La estructura de compuerta MOS se puede representar por un MOSFET de canal p M1 y un MOSFET de canal n M2.
Debido a que se trata de una estructura NPNP, en vez de la estructura PNPN de un SCR normal, el ánodo sirve como la terminal de referencia con respecto a la cual se aplican todas las señales de compuerta. Supongamos que el MCT está en estado de bloqueo directo y se aplica un voltaje negativo VGA. Un canal, p (o una capa de inversión) se forma en el material dopado n, haciendo que los huecos fluyan lateralmente del emisor p E2 de Q2 (fuente S1 del MOSFET M1 del canal p) a través del canal p hacia la base p B1 de Ql (que es drenaje D1 del MOSFET M1, del canal p). Este flujo de huecos forma la corriente de base correspondiente al transistor npn Q1. A continuación e1 emisor n+ E1 de Q1, inyecta electrones, que son recogidos en la base n B2 (y en el colector n C1) que hace que el emisor p E2 inyecte huecos en la base n B2, de tal forma que se active el transistor PNP Q2 y engancha al MCT. En breve, un VGA de compuerta negativa activa al MOSFET M1 canal p, proporcionando así la corriente de base del transistor Q2.
Supongamos que el MCT está en estado de conducción, y se aplica un voltaje positivo VGA. Se forma entonces un canal n en el material contaminado p, haciendo que fluyan lateralmente electrones de la base n B2 de Q2 (fuente S2 del MOSFET M2 del canal n) a través del canal n del emisor n+ fuertemente contaminado de Ql (drenaje D2 del MOSFET M2 del canal n+). Este flujo de electrones desvía la corriente de base del transistor PNP Q2 de tal forma que su unión base-emisor se desactiva, y ya no habrá huecos disponibles para recolección por la base p B1 de Q1 (y el colector p C2 de Q2). La eliminación de esta corriente de huecos en la base p B1, hace que se desactive el transistor NPN Q1, y el MCT regresa a su estado de bloqueo. En breve, un pulso positivo de compuerta VGA, desvía la corriente que excita la base de Ql, desactivando por lo tanto el MCT.
El MCT se puede operar como dispositivo controlado por compuerta, si su corriente es menor que la corriente controlable pico. Intentar desactivar el MCT a corrientes mayores que su corriente controlable pico de especificación, puede provocar la destrucción del dispositivo. Para valores más altos de corriente, el MCT debe ser conmutado como un SCR estándar. Los anchos de pulso de la compuerta no son críticos para dispositivos de corrientes pequeñas. Para corrientes mayores, el ancho del pulso de desactivación debe ser mayor. Además, durante la desactivación, la compuerta utiliza una corriente pico. En muchas aplicaciones, incluyendo inversores y pulsadores, se requiere, de un pulso continuo de compuerta sobre la totalidad del período de encendido/apagado a fin de evitar ambigüedad en el estado.




Un MCT tiene:




  1. Una baja caída de voltaje directo durante la conducción.


  2. Un tiempo de activado rápido, típicamente 0.4m s, y un tiempo de desactivado rápido, típicamente 1.25m s, para un MCT de 300A, 500v.


  3. Bajas perdidas de conmutación


  4. Una baja capacidad de bloqueo voltaje inverso.


  5. Una alta impedancia de entrada de compuerta, lo que simplifica mucho los circuitos de excitación. Es posible ponerlo efectivamente en paralelo, para interrumpir corrientes altas, con sólo modestas reducciones en la especificación de corriente del dispositivo. No se puede excitar fácilmente a partir de un transformador de pulso, si se requiere de una polarización continua a fin de evitar ambigüedad de estado.

Tiristores de control de fase o de conmutación rápida (SCR).


El miembro más importante de la familia de los tiristores es el tiristor de tres terminales, conocido también como el rectificador controlado de silicio o SCR. Este dispositivo lo desarrolló la General Electric en 1958 y lo denominó SCR. El nombre de tiristor lo adoptó posteriormente la Comisión Electrotécnica Internacional (CEI). En la figura siguiente se muestra el símbolo de un tiristor de tres terminales o SCR.
Tal como su nombre lo sugiere, el SCR es un rectificador controlado o diodo. Su característica voltaje-corriente, con la compuerta de entrada en circuito abierto, es la misma que la del diodo PNPN.
Lo que hace al SCR especialmente útil para el control de motores en sus aplicaciones es que el voltaje de ruptura o de encendido puede ajustarse por medio de una corriente que fluye hacia su compuerta de entrada. Cuanto mayor sea la corriente de la compuerta, tanto menor se vuelve VBO. Si se escoge un SCR de tal manera que su voltaje de ruptura, sin señal de compuerta, sea mayor que el mayor voltaje en el circuito, entonces, solamente puede activarse mediante la aplicación de una corriente a la compuerta. Una vez activado, el dispositivo permanece así hasta que su corriente caiga por debajo de IH. Además, una vez que se dispare el SCR, su corriente de compuerta puede retirarse, sin que afecte su estado activo. En este estado, la caída de voltaje directo a través del SCR es cerca de 1.2 a 1.5 veces mayor que la caída de voltaje a través de un diodo directo-oblicuo común.
Los tiristores de tres terminales o SCR son, sin lugar a dudas, los dispositivos de uso más común en los circuitos de control de potencia. Se utilizan ampliamente para cambiar o rectificar aplicaciones y actualmente se encuentran en clasificaciones que van desde unos pocos amperios hasta un máximo de 3,000 A.


Un SCR.



  1. Se activa cuando el voltaje VD que lo alimenta excede VBO.


  2. Tiene un voltaje de ruptura VBO, cuyo nivel se controla por la cantidad de corriente iG, presente en el SCR.


  3. Se desactiva cuando la corriente iD que fluye por él cae por debajo de IH.


  4. Detiene todo flujo de corriente en dirección inversa, hasta que se supere el voltaje máximo inverso.

TRANSISTORES

Transistores.- Dispositivos con propiedades de ganacia similares a los antiguos tubos de vacío.
Normalmente se contruyen en germanio o silicio, materiales que son semiconductores adecuados para aplicarlos a los transistores. Experimentalmente se utilizan tambien compuestos de galio y de arsénico.



TIPOS DE TRANSISTORES:

De punta de contacto: El transistor primario. Consistía en electrodos de emisor y colector tocando un pequeño bloque de germanio llamado base, que podía ser de tipo N y del tipo P, siendo un cuadrado de 0.05 pulgada de lado. Era dificil de controlar, por lo que ya hoy se encuentra sin uso por estar anticuado.

De unión por crecimiento: Se obtienen sus cristales realizando un proceso de crecimiento, desde el germanio y el silicio fundidos de forma que presenten uniones con muy poca separación incrustadas en la pastilla.
Las impurezas se transofrman durante el crecimiento del cristal y producen lingotes PNP o NPN, de los que se obtiene pastillas individuales.
de unión a su vez pueden ser de unión de crecimiento, unión por alineación o de campo interno, que es aquél en que la concentración de impurezas se encuentra en una cierta zona de la base a fin de mejorar el comportamiento en alta frecuencia del transistor.

De unión difusa: Utilizable en un margen amplio de frecuencias en el proceso de fabricación se utiliza silicio, lo que favorece la capacidad de potencia.
Se subdividen en los de difusión única ( hometaxial ), doble difusión, doble difusión planar y triple difusión planar.


Epitaxiales:Transistor de unión obtenido por el proceso de crecimiento en pastilla de semiconductor y procesos fotolitográficos utilizados para definir las regiones de emisor y de base durante el crecimiento.
Se subdividen en transistores de base epitaxial, capa epitaxial y sobrecapa.



De efecto de campo de unión (JFET): Tambien llamado transistor unipolar, fué el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta.
A uno de estos contacrtos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero.
Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.

sábado, 11 de octubre de 2008

NUMEROS BINARIOS



Los números binarios representan datos alfanuméricos

Para ejecutar las aplicaciones de software, la computadora debe convertir el código del software al formato binario y luego transformar el formato binario en un lenguaje comprensible. Las computadoras operan con switches electrónicos que se encuentran "encendidos" o "apagados", correspondientes a 1 ó 0.
Las computadoras no utilizan el sistema de numeración decimal como lo hacen los seres humanos, debido a que los dispositivos electrónicos se encuentran estructurados de tal manera que la numeración binaria es natural: las computadoras deben traducirla para poder utilizar la numeración decimal. Las computadoras sólo pueden comprender y procesar datos que aparecen en formato binario, representados por ceros y unos. Estos ceros y unos representan los dos estados posibles de un componente electrónico y se denominan dígitos binarios o bits.
La representación de números binarios que utilizan muchos teclados y caracteres de control aparece en el esquema del Código americano normalizado para el intercambio de la información (ASCII). ASCII es uno de varios sistemas de codificación de caracteres utilizados en las LAN.

Bits y bytes

Los bits son dígitos binarios; estos dígitos son ceros o unos. En un computador, estos están representados por la presencia o la ausencia de cargas eléctricas.
Ejemplo:
ü binario 0 puede estar representado por 0 voltios de electricidad (0 = 0 voltios)
ü binario 1 puede estar representado por +5 voltios de electricidad (1 = +5 voltios)
Un grupo de 8 bits es igual a 1 byte, que puede representar entonces un solo carácter de datos, como ocurre en el código ASCII. Además, para las computadoras, 1 byte representa una sola ubicación de almacenamiento direccionable.

Sistema numérico de Base 10 (decimal)

Un sistema numérico está compuesto de símbolos y de normas para usarlos. Existen muchos sistemas numéricos. El sistema numérico de uso más frecuente, y con el cual probablemente usted está más familiarizado, es el sistema numérico decimal, o de Base 10. Se denomina de Base 10 debido a que utiliza diez símbolos, y combinaciones de estos símbolos, para representar todos los números posibles. Los dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 conforman el sistema de Base 10.
Un sistema numérico decimal se basa en potencias de 10. Cada símbolo o dígito representa el número 10 (número de base) elevado a una potencia (exponente), de acuerdo con su posición y se multiplica por el número que posee esa posición. Al leer un número decimal de derecha a izquierda, la primera posición representa 100 (1), la segunda posición representa 101 (10 x 1= 10), la tercera posición representa 102 (10 x 10 x 1=100), 106 (10 x 10 x 10 x 10 x 10 x 10 x 1=1.000.000)
Ejemplo:
2134 = (2x103) + (1x102) + (3x101) + (4x100)
Hay un 2 en la posición correspondiente a los miles, un 1 en la posición de las centenas, un 3 en la posición de las decenas y un 4 en la posición de las unidades.

Sistema numérico de Base 2 (binario)

Las computadoras reconocen y procesan datos utilizando el sistema numérico binario (Base 2) . El sistema numérico binario usa sólo dos símbolos, – 0 y 1 –, en lugar de los diez símbolos que se utilizan en el sistema numérico decimal. La posición o lugar de cada dígito representa el número 2 – el número base – elevado a una potencia (exponente), basada en su posición (20, 21, 22, 23, 24, etc.)
Ejemplo:
10110 = (1 x 24 = 16) + (0 x 23 = 0) + (1 x 22 =4) + (1 x 21 = 2) + (0 x 20 = 0) = 22 (16 + 0 + 4 + 2 + 0)
Si lee el número binario (10110) de izquierda a derecha, verá que hay un 1 en la posición del 16, un 0 en la posición del 8, un 1 en la posición del 4, un 1 en la posición del 2 y un 0 en la posición del 1, que sumados dan el número decimal 22.

Conversión de números decimales en binarios.

Existen dos formas básicas para convertir números decimales en números binarios. El diagrama de flujo del gráfico principal describe un proceso con un ejemplo. El otro método se denomina método del residuo o resto. Este método utiliza divisiones sucesivas en las que se usa el número base del sistema. En este caso, es la Base 2.
Ejercicio de conversión.
Ejemplo:
Convertir el número decimal 192 en número binario.

192/2 = 96 con un residuo de 0
96/2 = 48 con un residuo de 0
48/2 = 24 con un residuo de 0
24/2 = 12 con un residuo de 0
12/2 = 6 con un residuo de 0
6/2 = 3 con un residuo de 0
3/2 = 1 con un residuo de 1
1/2 = 0 con un residuo de 1

Escriba todos los residuos, de atrás hacia adelante y obtendrá el número binario 11000000.



Conversión de números binarios en decimales

Existen dos formas básicas para convertir números binarios en decimales. El diagrama de flujo del gráfico principal muestra un ejemplo.
También se pueden convertir números binarios en decimales multiplicando los dígitos binarios por el número base del sistema de – Base 2 – elevado al exponente de su posición.
Ejercicio de conversión.
Ejemplo:
Convertir el número binario 01110000 en decimal. (Nota: La operación debe realizarse de derecha a izquierda). Recuerde que cualquier número elevado a la potencia 0 es igual a 1; por lo tanto 20 = 1.).

0 x 2^0 =0
0 x 2^1 =0
0 x 2^2 =0
0 x 2^3 =0
1 x 2^4 =16
1 x 2^5 =32
1 x 2^6 =64
0 x 2^7 =0

TIPOS DE DIODOS




Existen varios tipos de diodos, de algunos ya se habló en otra página y de los cuales haremos mención en esta, con este tipo de componente te vas a encontar en todos los aparatos electrónicos, ya que es un componente de importancia. Vamos a resaltar los que de alguna forma son los más usados y de importancia, trataremos a cada uno de estos en resúmen.


DIODOS RECTIFICADORES: Los diodos rectificadores son los que en principio conocemos, estos facilitan el paso de la corriente contínua en un sólo sentido (polarización directa), en otras palabras, si hacemos circular corriente alterna a través de un diodo rectificador esta solo lo hará en la mitad de los semiciclos, aquellos que polaricen directamente el diodo, por lo que a la salida del mismo obtenemos una señal de tipo pulsatoria pero contínua. Se conoce por señal o tensión contínua aquella que no varia su polaridad.

DIODOS DE TRATAMIENTO DE SEÑAL (RF): Los diodos de tratamiento de señal necesitan algo más de calidad de fabricación que los rectificadores. Estos diodos están destinados a formar parte de etapas moduladoras, demoduladoras, mezcla y limitación de señales, etc.
Uno de los puntos más críticos en el diodo, al momento de trabajar con media y alta frecuencia, se encuentra en la "capacidad de unión", misma que se debe a que en la zona de la Unión PN se forman dos capas de carga de sentido opuesto que conforman una capacidad real.
En los diodos de RF (radio frecuencia) se intenta que dicha capacidad sea reducida a su mínima expresión, lo cual ayudará a que el diodo conserve todas sus habilidades rectidficadoras, incluso cuando trabaje en altas frecuencias.
Entre los diodos más preparados para lidiar con las altas frecuencias destaca el diodo denominado Schottky. Este didodo fue desarrolado a principio de los sesenta por la firma Hewletty, deriva de los diodos de punta de contacto y de los de unión PN de los
que han heredado el procedimiento de fabricación.

DIODOS DE CAPACIDAD VARIABLE ( VARICAP ): La capacidad formada en los extremos de la unión PN puede resultar de gran utilidad cuando, al contrario de lo que ocurre con los diodos de RF, se busca precisamente utilizar dicha capacidad en provecho del circuito en el cual se está utilizando el diodo. Al polarizar un diodo de forma directa se observa que, además de las zonas constitutivas de la capacidad buscada, aparece en paralelo con ellas una resistencia de muy bajo valor óhmico, lo que conforma un capacitor de elevadas pérdidas. Sin embargo, si polarizamos el mismo en sentido inverso la resistencia en paralelo que aparece es de un valor muy alto, lo cual hace que el diodo se pueda comportar como un capacitor con muy bajas pérdidas.
Si aumentamos la tensión de polarización inversa las capas de carga del diodo se esparcian lo suficiente para que el efecto se asemeje a una disminución de la capacidad del hipotético capacitor (el mismo efecto producido al distanciar las placas del un capacitor estándar).
Por esta razón podemos terminar diciendo que los diodos de capacidad variable, más conocidos como varicap's, varian su capacidad interna al ser alterado el valor de la tensión que los polariza de forma inversa.
La utilización más solicitada para este tipo de diodos suele ser la de sustituir a complejos sistemas mecánicos de capacitor variable en etapas de sintonía en todo tipo de equipos de emisión y recepción, ejemplo, cuando cambiamos la sintonía de un receptor antiguo, se varía mecanicamente el eje de un capacitor variable en la etapa de sintonía; pero si por el contrario, pulsamos un botón de sintonía de un receptor de televison moderno, lo que hacemos es variar la tensión de polarización de un diodo varicap que se encuentra en el módulo sintonizador del TV.

DIODO ZENER:Cuando se estudian los diodos se recalca sobre la diferencia que existe en la gráfica con respecto a la corriente directa e inversa. Si polarizamos inversamente un diodo estándar y aumentamos la tensión llega un momento en que se origina un fuerte paso de corriente que lleva al diodo a su destrucción. Este punto se da por la tensión de ruptura del diodo.
Se puede conseguir controlar este fenómeno y aprovecharlo, de tal manera que no se origine la destrucción del diodo. Lo que tenemos que hacer el que este fenómeno se dé dentro de márgenes que se puedan controlar.
El diodo zener es capaz de trabajar en la región en la que se da el efecto del mismo nombre cuando las condidiones de polarización así lo determinen y volver a comportarse como un diodo estándar toda vez que la polarización retorne a su zona de trabajo normal. En resúmen, el diodo zener se comporta como un diodo normal, a no ser que alcance la tensión zener para la que ha sido fabricado, momento en que dejará pasar a través de él una cantidad determinada de corriente.

Este efecto se produce en todo tipo de circuitos reguladores, limitadores y recortadores de tensión.

FOTODIODOS:Algo que se ha utilizado en favor de la técnica electrónica moderna es la influencia de la energía luminosa en la ruptura de los enlaces de electrones situados en el seno constitutivo de un diodo. Los fotodiodos no son diodos en los cuales se ha optimizado el proceso de componentes y forma de fabricación de modo que la influencia luminosa sobre su conducción sea la máxima posible. Esto se obtiene, por ejemplo, con fotodiodos de silicio en el émbito de la luz incandescente y con fotodiodos de germanio en zonas de influencia de luz infrarroja.

DIODOS LED( LUMINISCENTES ): Este tipo de diodos es muy popular, sino, veamos cualquier equipo electrónico y veremos por lo menos 1 ó más diodos led. Podemos encontrarlos en direfentes formas, tamaños y colores diferentes. La forma de operar de un led se basa en la recombinación de portadores mayoritarios en la capa de barrera cuando se polariza una unión Pn en sentido directo. En cada recombinación de un electrón con un hueco se libera cierta energía. Esta energía, en el caso de determinados semiconductores, se irradia en forma de luz, en otros se hace de forma térmica.
Dichas radiaciones son básicamente monocromáticas (sin color). Por un método de "dopado" del material semiconductor se puede afectar la enegía de radiación del diodo.

El nombre de LED se debe a su abreviatura en ingles ( Light Emmiting Diode )
Además de los diodos led existen otros diodos con diferente emisión, como la infrarroja, y que responden a la denominación IRED (Diodo emisor de infra-rojos).

BOMBILLO AHORRADOR